Telegram Group & Telegram Channel
A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning [2018]

Неделю назад я писал пост про Evolution Strategies. Напомню его область применения:

1) Есть не очень большое пространство параметров
2) Есть функция качества этих параметров, но нет доступа к каким-либо градиентам

Эта область применения не так уж и редко встречается в реальной жизни, и чаще всего это происходит в контексте оптимизации гиперпараметров. В этом случае появляется ещё одно обстоятельство:

3) Функцию качества очень долго и дорого считать

В данной ситуации мы хотим максимально эффективно использовать этот ресурс, извлекать и переиспользовать максимальное количество информации из её замеров. Стандартный Evolution Strategies в этом плане достаточно туп - каждая итерация алгоритма происходит "с чистого листа", а точки для замера выбираются с помощью добавления шума.

Именно здесь на сцену выходит Bayesian model-based optimization. Это целое семейство методов, но все они работают по примерно одному и тому же принципу:

1) Мы пытаемся аппроксимировать распределение P(objective | params)
2) Мы используем каждое наше измерение для обучения этой аппроксимации
3) Выбор следующих кандидатов происходит по-умному, балансируя между неисследованными областями в пространстве параметров и проверкой тех областей, в которых мы ожидаем получить хорошее значение функции

Исследуя всё больше и больше точек, мы получаем всё более точную аппроксимацию функции, как показано на картинке. Остаётся выбрать, каким образом моделировать распределение и выбирать кандидатов.

Один из вариантов, используемых на практике, выглядит так:

- При выборе следующих кандидатов мы максимизируем нечто похожее на "мат. ожидание" P(objective | params), но интеграл берётся только по "хорошим" значениям objective - это называется Expected Improvement
- Для оценки P(objective | params) мы формулу Байеса и переходим к моделированию P(params | objective), которое в свою очередь является композицией из двух распределений P(params) - для "хороших" значений objective и для "плохих" - эти распределения называется`L(params) и `G(params).
- В пунктах выше я упоминал "хорошие" и "плохие" значения. Порог, который их разделяет, выбирается как квантиль уже собранного нами множества значений objective.

При применении капельки математики получается, что Expected Improvement максимизируется в тех точках, в которых максимизируется` L(params) / G(params). Эти точки мы пытаемся найти, сэмплируя много раз из `L(params) и пересчитывая это соотношение. Вся эта схема называется Tree-structured Parzen Estimator.

Описанная процедура гораздо хитрее и тяжелее, чем Evolution Strategies, но всё это несопоставимо дешевле и быстрее, чем каждый подсчёт значения Objective(params). Таким образом, метод хорошо подходит для таких ситуаций, как оптимизация гиперпараметров обучения, и используется в качестве одного из основных в библиотеке Hyperopt.

Метод, конечно, не идеален - он не учитывает зависимости параметров между собой. Это может ограничивать область применения и мешать методу работать для оптимизации более запутанных схем. Бесплатные обеды, как обычно, не завезли.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/261
Create:
Last Update:

A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning [2018]

Неделю назад я писал пост про Evolution Strategies. Напомню его область применения:

1) Есть не очень большое пространство параметров
2) Есть функция качества этих параметров, но нет доступа к каким-либо градиентам

Эта область применения не так уж и редко встречается в реальной жизни, и чаще всего это происходит в контексте оптимизации гиперпараметров. В этом случае появляется ещё одно обстоятельство:

3) Функцию качества очень долго и дорого считать

В данной ситуации мы хотим максимально эффективно использовать этот ресурс, извлекать и переиспользовать максимальное количество информации из её замеров. Стандартный Evolution Strategies в этом плане достаточно туп - каждая итерация алгоритма происходит "с чистого листа", а точки для замера выбираются с помощью добавления шума.

Именно здесь на сцену выходит Bayesian model-based optimization. Это целое семейство методов, но все они работают по примерно одному и тому же принципу:

1) Мы пытаемся аппроксимировать распределение P(objective | params)
2) Мы используем каждое наше измерение для обучения этой аппроксимации
3) Выбор следующих кандидатов происходит по-умному, балансируя между неисследованными областями в пространстве параметров и проверкой тех областей, в которых мы ожидаем получить хорошее значение функции

Исследуя всё больше и больше точек, мы получаем всё более точную аппроксимацию функции, как показано на картинке. Остаётся выбрать, каким образом моделировать распределение и выбирать кандидатов.

Один из вариантов, используемых на практике, выглядит так:

- При выборе следующих кандидатов мы максимизируем нечто похожее на "мат. ожидание" P(objective | params), но интеграл берётся только по "хорошим" значениям objective - это называется Expected Improvement
- Для оценки P(objective | params) мы формулу Байеса и переходим к моделированию P(params | objective), которое в свою очередь является композицией из двух распределений P(params) - для "хороших" значений objective и для "плохих" - эти распределения называется`L(params) и `G(params).
- В пунктах выше я упоминал "хорошие" и "плохие" значения. Порог, который их разделяет, выбирается как квантиль уже собранного нами множества значений objective.

При применении капельки математики получается, что Expected Improvement максимизируется в тех точках, в которых максимизируется` L(params) / G(params). Эти точки мы пытаемся найти, сэмплируя много раз из `L(params) и пересчитывая это соотношение. Вся эта схема называется Tree-structured Parzen Estimator.

Описанная процедура гораздо хитрее и тяжелее, чем Evolution Strategies, но всё это несопоставимо дешевле и быстрее, чем каждый подсчёт значения Objective(params). Таким образом, метод хорошо подходит для таких ситуаций, как оптимизация гиперпараметров обучения, и используется в качестве одного из основных в библиотеке Hyperopt.

Метод, конечно, не идеален - он не учитывает зависимости параметров между собой. Это может ограничивать область применения и мешать методу работать для оптимизации более запутанных схем. Бесплатные обеды, как обычно, не завезли.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/261

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA